
Production
FROM PROTOTYPE TO PRODUCT

1

Production
After preproduction deliverables (eg. prototype or technology
demonstrations) are accepted, you are free to proceed with
production.
◦ Development of the game based on the results from preproduction.

◦ Testing of the game.

◦ Release to manufacture.

◦ Maintenance after release (typically in the form of patches and upgrades).

2

Development
Development is the long haul of video game production.

Development of modern video games typically lasts six months to two years.
◦ Very little can be done well in less than six months; there is simply too much to do.

◦ Anything longer than two years, and you risk your game going stale or becoming obsolete
before it is even released.

3

Development
Time is very deceptive at the start of development.

◦ It would seem you have more than enough time to get everything done on
schedule.

◦ As deadlines near, panic sets in as you realize that you do not have as much
time as you thought.

It is critically important to break large tasks
into small manageable tasks that can be rigorously tracked.
◦ It is much easier to ensure that things are on time and progressing well this

way.

4

Development
Be prepared to revisit your designs throughout development.

◦ As you discover what works, and what does not work so well, redesign will be needed and
documentation will need updating.

In the end, some form of iterative software development model might be
necessary.
◦ For example, some type of prototyping model (evolutionary or throwaway), or a spiral model

(with risk analyses) might work best.

5

Scrum Iterations Cycles

6

Development
There is a growing interest in the games industry in agile software
development.
◦ Agile methods differ from traditional iterative methods in that their time

period is measured in weeks rather than months, and work is performed in a
highly collaborative manner.

Methods such as extreme programming, pair (or peer)
programming, and the scrum development process might ultimately
prove useful in the development of games.
◦ Time and experience will tell what works best …

7

Development
A few survival tips to keep in mind:

◦ Maintain good communication across the development team.

◦ Keep design documentation up to date.

◦ Maintain the team’s identity and spirit.

◦ Give marketing and public relations the materials and demos they need – they will
help keep people’s spirits up when things get tough.

◦ Be ready for a shock or two. When these happen, keep your head down and do the
work! Things are rarely as bad as they seem.

◦ Have a few features ready to throw away to help manage scope in the long run.

8

Testing
Testing is important for both validation and verification purposes.

Validation:
◦ Are we building the right game?
◦ To improve game design, gameplay, and so on.

Verification:
◦ Are we building the game right?
◦ To eliminate bugs, remove imbalances, and so on.

Testing should occur throughout development to remove problems
as soon as possible.

9

10

11

Testing:
Different Types of Testing
Unit testing.

◦ The testing of game modules on an individual basis.

System testing.
◦ The testing of integrated game modules as a more-or-less complete system.

Acceptance testing.
◦ An essentially complete game is demonstrated for acceptance and publishing.

12

Testing:
Approaches to Testing
Black box (functional) testing:

◦ Game functionality is tested according to specification, without looking at its
internals.

White box (structural) testing:
◦ The game is tested according to its internal

structure and code to ensure it behaves
correctly when provided with test data.

Regression testing:
◦ Developing libraries of test cases that the game is sent through each time a change

or update is made.
◦ The purpose here is to retest the game to ensure it still works correctly after

modifications.
◦ Can be applied to both black box and white box testing equally well.

13

14

Test and Verification in Scrum

Code Freezes
A code freeze can occur at many times during game development to prevent
changes that could cause significant problems and delays.
◦ Code freezes to fix key interfaces between

modules to allow module developers to complete their modules without fear of
modifications.

◦ Code freezes to prevent new functionality or features from being added too late in the
development process.

◦ Code freezes in the last days of beta testing that allow only critical or “showstopper” bugs to
be removed.

◦ Code freezes before a milestone or deliverable.

15

Milestones
Key milestones represent deliverables to the publisher.

Often, there are several internal milestones as well.

Key Milestones include:
◦ First Playable (2nd, 3rd, 4th, etc may also exist)

◦ Alpha, Beta, Gold

16

Milestones
Alpha

◦ Internal testing.

◦ The game is at the point where it is mostly playable from start to finish.

◦ Some content and gameplay might be missing, but the engine, interface, and
other major subsystems are complete.

◦ The focus shifts from building to finishing; from creating to polishing.

◦ This is the beginning of the end!

17

Milestones
Beta

◦ Internal or external testing.

◦ Everything is now complete and integrated into an essentially finalized game.

◦ The goal here is to stabilize the game and eliminate remaining bugs before
release.

◦ If possible, doing a public beta gets a lot of extra testing done for very little
cost.

◦ The last portion of beta testing is crunch time, where the only important thing
is finishing the game.

18

Milestones
Gold candidate

◦ The game has been approved by the publisher.

Gold master
◦ The game is released to manufacture when one of the gold candidate releases

has been thoroughly tested and deemed acceptable by the console
manufacturer.

◦ You can finally celebrate!!

19

Blitz Games Studios Milestones

20

Maintenance
After release, the development is rarely over. There are often smaller
releases that follow.

Patches:
◦ Typically to fix bugs discovered after release, or to handle incompatibilities with user

hardware or software configurations.

Upgrades and updates:
◦ Represent additional content created to enhance the original game. Can be new

levels, characters, weapons, story elements, and so on.
◦ These are really mini-projects, and need to be handled as such, with the same

management needs.

21

Pipelines in video game
production

22

Introduction to pipelines
The pipeline is a process where an asset or element of the game moves from
concept to completion and then into the game build through a series of steps
where multiple team members each contribute a portion to the overall asset.

The notion of pipeline is not a new one! The car industry is using the pipeline
for nearly a hundred years.

In your games, always try to define, form and use pipelines.
◦ That is because they will give you an structured way to produce things.

23

An example of a pipeline
Game development consists of a series if interconnecting pipelines.

Each discipline can have numerous sub-pipelines within it and as each element is completed it
branches off onto another pipeline, eventually working its way into the final code.

The clearest example of how a pipeline works is through the evolution of a character model.

The example that follows is very basic; there are numerous techniques,

styles, and approaches to a pipeline, this only being one.

These pipelines are also never clear lines, having the asset back-and-forth at various stages, with
work in progress moving onto the other pipelines so as to not cause delays in the other
disciplines work.

24

Character modeling pipeline
A primary character model in a game is rarely made by one single artist from
start to finish.

Here is a simplified example showing the evolution of a character model as it
goes through the artists ’ pipeline

25

The modeling pipeline starts with a
concept

26

A 3d model is created
from the concept

27

Rigging artist makes
the skeleton for the mesh

28

A mapping artist
creates the textures

29

A mapping artist maps the texture to 3D
model

30

The final model is provided to animator
who adds motion to the character

31

Now it’s Programmers Turn
Tools Programmers Creates a Way to Export Animated Model to the Game
Engine

GamePlay Programmers Sync Player movements with Game Logics.

32

33

34

Even publishers use
pipelines for the acceptance
of a game

Post Mortem
After your game is complete always use a post mortem phase. In this stage you
will ask yourself two primary questions:

◦ What went right?

◦ What went wrong?

35

